optiboot_luminet.elf: file format elf32-avr Sections: Idx Name Size VMA LMA File off Algn 0 .text 00000280 00001d00 00001d00 00000054 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 1 .debug_aranges 00000028 00000000 00000000 000002d4 2**0 CONTENTS, READONLY, DEBUGGING 2 .debug_pubnames 00000078 00000000 00000000 000002fc 2**0 CONTENTS, READONLY, DEBUGGING 3 .debug_info 00000289 00000000 00000000 00000374 2**0 CONTENTS, READONLY, DEBUGGING 4 .debug_abbrev 000001a1 00000000 00000000 000005fd 2**0 CONTENTS, READONLY, DEBUGGING 5 .debug_line 00000435 00000000 00000000 0000079e 2**0 CONTENTS, READONLY, DEBUGGING 6 .debug_frame 000000a0 00000000 00000000 00000bd4 2**2 CONTENTS, READONLY, DEBUGGING 7 .debug_str 00000144 00000000 00000000 00000c74 2**0 CONTENTS, READONLY, DEBUGGING 8 .debug_loc 00000194 00000000 00000000 00000db8 2**0 CONTENTS, READONLY, DEBUGGING 9 .debug_ranges 00000088 00000000 00000000 00000f4c 2**0 CONTENTS, READONLY, DEBUGGING Disassembly of section .text: 00001d00
: #ifdef VIRTUAL_BOOT_PARTITION #define rstVect (*(uint16_t*)(0x204)) #define wdtVect (*(uint16_t*)(0x206)) #endif /* main program starts here */ int main(void) { 1d00: 85 e0 ldi r24, 0x05 ; 5 1d02: 8e bd out 0x2e, r24 ; 46 UCSR0C = _BV(UCSZ00) | _BV(UCSZ01); UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 ); #endif // Adaboot no-wait mod ch = MCUSR; 1d04: 84 b7 in r24, 0x34 ; 52 MCUSR = 0; 1d06: 14 be out 0x34, r1 ; 52 if (!(ch & _BV(EXTRF))) appStart(); 1d08: 81 ff sbrs r24, 1 1d0a: 27 d1 rcall .+590 ; 0x1f5a // Set up watchdog to trigger after 500ms watchdogConfig(WATCHDOG_500MS); 1d0c: 8d e0 ldi r24, 0x0D ; 13 1d0e: 21 d1 rcall .+578 ; 0x1f52 /* Set LED pin as output */ LED_DDR |= _BV(LED); 1d10: d4 9a sbi 0x1a, 4 ; 26 #ifdef SOFT_UART /* Set TX pin as output */ UART_DDR |= _BV(UART_TX_BIT); 1d12: d2 9a sbi 0x1a, 2 ; 26 1d14: 86 e0 ldi r24, 0x06 ; 6 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 1d16: 23 ec ldi r18, 0xC3 ; 195 1d18: 3f ef ldi r19, 0xFF ; 255 TIFR1 = _BV(TOV1); 1d1a: 91 e0 ldi r25, 0x01 ; 1 } #if LED_START_FLASHES > 0 void flash_led(uint8_t count) { do { TCNT1 = -(F_CPU/(1024*16)); 1d1c: 3d bd out 0x2d, r19 ; 45 1d1e: 2c bd out 0x2c, r18 ; 44 TIFR1 = _BV(TOV1); 1d20: 9b b9 out 0x0b, r25 ; 11 while(!(TIFR1 & _BV(TOV1))); 1d22: 58 9b sbis 0x0b, 0 ; 11 1d24: fe cf rjmp .-4 ; 0x1d22 LED_PIN |= _BV(LED); 1d26: cc 9a sbi 0x19, 4 ; 25 return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 1d28: a8 95 wdr TCNT1 = -(F_CPU/(1024*16)); TIFR1 = _BV(TOV1); while(!(TIFR1 & _BV(TOV1))); LED_PIN |= _BV(LED); watchdogReset(); } while (--count); 1d2a: 81 50 subi r24, 0x01 ; 1 1d2c: b9 f7 brne .-18 ; 0x1d1c /* get character from UART */ ch = getch(); if(ch == STK_GET_PARAMETER) { // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 1d2e: cc 24 eor r12, r12 1d30: c3 94 inc r12 boot_page_fill((uint16_t)(void*)addrPtr,a); addrPtr += 2; } while (--ch); // Write from programming buffer boot_page_write((uint16_t)(void*)address); 1d32: 85 e0 ldi r24, 0x05 ; 5 1d34: e8 2e mov r14, r24 vect -= 4; // Instruction is a relative jump (rjmp), so recalculate. buff[10] = vect & 0xff; buff[11] = vect >> 8; // Add jump to bootloader at RESET vector buff[0] = 0x7f; 1d36: 0f e7 ldi r16, 0x7F ; 127 1d38: d0 2e mov r13, r16 buff[1] = 0xce; // rjmp 0x1d00 instruction 1d3a: 1e ec ldi r17, 0xCE ; 206 1d3c: f1 2e mov r15, r17 #endif /* Forever loop */ for (;;) { /* get character from UART */ ch = getch(); 1d3e: f0 d0 rcall .+480 ; 0x1f20 if(ch == STK_GET_PARAMETER) { 1d40: 81 34 cpi r24, 0x41 ; 65 1d42: 21 f4 brne .+8 ; 0x1d4c // GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy getNch(1); 1d44: 81 e0 ldi r24, 0x01 ; 1 1d46: 14 d1 rcall .+552 ; 0x1f70 putch(0x03); 1d48: 83 e0 ldi r24, 0x03 ; 3 1d4a: 24 c0 rjmp .+72 ; 0x1d94 } else if(ch == STK_SET_DEVICE) { 1d4c: 82 34 cpi r24, 0x42 ; 66 1d4e: 11 f4 brne .+4 ; 0x1d54 // SET DEVICE is ignored getNch(20); 1d50: 84 e1 ldi r24, 0x14 ; 20 1d52: 03 c0 rjmp .+6 ; 0x1d5a } else if(ch == STK_SET_DEVICE_EXT) { 1d54: 85 34 cpi r24, 0x45 ; 69 1d56: 19 f4 brne .+6 ; 0x1d5e // SET DEVICE EXT is ignored getNch(5); 1d58: 85 e0 ldi r24, 0x05 ; 5 1d5a: 0a d1 rcall .+532 ; 0x1f70 1d5c: cf c0 rjmp .+414 ; 0x1efc } else if(ch == STK_LOAD_ADDRESS) { 1d5e: 85 35 cpi r24, 0x55 ; 85 1d60: a1 f4 brne .+40 ; 0x1d8a // LOAD ADDRESS address = getch(); 1d62: de d0 rcall .+444 ; 0x1f20 1d64: 08 2f mov r16, r24 1d66: 10 e0 ldi r17, 0x00 ; 0 1d68: 10 93 01 02 sts 0x0201, r17 1d6c: 00 93 00 02 sts 0x0200, r16 address = (address & 0xff) | (getch() << 8); 1d70: d7 d0 rcall .+430 ; 0x1f20 1d72: 90 e0 ldi r25, 0x00 ; 0 1d74: 98 2f mov r25, r24 1d76: 88 27 eor r24, r24 1d78: 80 2b or r24, r16 1d7a: 91 2b or r25, r17 address += address; // Convert from word address to byte address 1d7c: 88 0f add r24, r24 1d7e: 99 1f adc r25, r25 1d80: 90 93 01 02 sts 0x0201, r25 1d84: 80 93 00 02 sts 0x0200, r24 1d88: b8 c0 rjmp .+368 ; 0x1efa verifySpace(); } else if(ch == STK_UNIVERSAL) { 1d8a: 86 35 cpi r24, 0x56 ; 86 1d8c: 29 f4 brne .+10 ; 0x1d98 // UNIVERSAL command is ignored getNch(4); 1d8e: 84 e0 ldi r24, 0x04 ; 4 1d90: ef d0 rcall .+478 ; 0x1f70 putch(0x00); 1d92: 80 e0 ldi r24, 0x00 ; 0 1d94: b6 d0 rcall .+364 ; 0x1f02 1d96: b2 c0 rjmp .+356 ; 0x1efc } /* Write memory, length is big endian and is in bytes */ else if(ch == STK_PROG_PAGE) { 1d98: 84 36 cpi r24, 0x64 ; 100 1d9a: 09 f0 breq .+2 ; 0x1d9e 1d9c: 6e c0 rjmp .+220 ; 0x1e7a // PROGRAM PAGE - we support flash programming only, not EEPROM uint8_t *bufPtr; uint16_t addrPtr; getLen(); 1d9e: d4 d0 rcall .+424 ; 0x1f48 // Immediately start page erase - this will 4.5ms boot_page_erase((uint16_t)(void*)address); 1da0: e0 91 00 02 lds r30, 0x0200 1da4: f0 91 01 02 lds r31, 0x0201 1da8: 83 e0 ldi r24, 0x03 ; 3 1daa: 80 93 57 00 sts 0x0057, r24 1dae: e8 95 spm 1db0: c0 e0 ldi r28, 0x00 ; 0 1db2: d1 e0 ldi r29, 0x01 ; 1 // While that is going on, read in page contents bufPtr = buff; do *bufPtr++ = getch(); 1db4: b5 d0 rcall .+362 ; 0x1f20 1db6: 89 93 st Y+, r24 while (--length); 1db8: 80 91 02 02 lds r24, 0x0202 1dbc: 81 50 subi r24, 0x01 ; 1 1dbe: 80 93 02 02 sts 0x0202, r24 1dc2: 88 23 and r24, r24 1dc4: b9 f7 brne .-18 ; 0x1db4 // Read command terminator, start reply verifySpace(); 1dc6: ce d0 rcall .+412 ; 0x1f64 // If only a partial page is to be programmed, the erase might not be complete. // So check that here boot_spm_busy_wait(); 1dc8: 07 b6 in r0, 0x37 ; 55 1dca: 00 fc sbrc r0, 0 1dcc: fd cf rjmp .-6 ; 0x1dc8 #ifdef VIRTUAL_BOOT_PARTITION if ((uint16_t)(void*)address == 0) { 1dce: 80 91 00 02 lds r24, 0x0200 1dd2: 90 91 01 02 lds r25, 0x0201 1dd6: 89 2b or r24, r25 1dd8: 41 f5 brne .+80 ; 0x1e2a // This is the reset vector page. We need to live-patch the code so the // bootloader runs. // // Move RESET vector to WDT vector uint16_t vect = buff[0] | (buff[1]<<8); 1dda: 80 91 00 01 lds r24, 0x0100 1dde: 20 91 01 01 lds r18, 0x0101 1de2: 30 e0 ldi r19, 0x00 ; 0 1de4: 32 2f mov r19, r18 1de6: 22 27 eor r18, r18 1de8: 90 e0 ldi r25, 0x00 ; 0 1dea: 28 2b or r18, r24 1dec: 39 2b or r19, r25 rstVect = vect; 1dee: 30 93 05 02 sts 0x0205, r19 1df2: 20 93 04 02 sts 0x0204, r18 wdtVect = buff[10] | (buff[11]<<8); 1df6: 40 91 0a 01 lds r20, 0x010A 1dfa: 80 91 0b 01 lds r24, 0x010B 1dfe: 90 e0 ldi r25, 0x00 ; 0 1e00: 98 2f mov r25, r24 1e02: 88 27 eor r24, r24 1e04: 50 e0 ldi r21, 0x00 ; 0 1e06: 84 2b or r24, r20 1e08: 95 2b or r25, r21 1e0a: 90 93 07 02 sts 0x0207, r25 1e0e: 80 93 06 02 sts 0x0206, r24 vect -= 4; // Instruction is a relative jump (rjmp), so recalculate. 1e12: 24 50 subi r18, 0x04 ; 4 1e14: 30 40 sbci r19, 0x00 ; 0 buff[10] = vect & 0xff; 1e16: 20 93 0a 01 sts 0x010A, r18 buff[11] = vect >> 8; 1e1a: 23 2f mov r18, r19 1e1c: 33 27 eor r19, r19 1e1e: 20 93 0b 01 sts 0x010B, r18 // Add jump to bootloader at RESET vector buff[0] = 0x7f; 1e22: d0 92 00 01 sts 0x0100, r13 buff[1] = 0xce; // rjmp 0x1d00 instruction 1e26: f0 92 01 01 sts 0x0101, r15 } #endif // Copy buffer into programming buffer bufPtr = buff; addrPtr = (uint16_t)(void*)address; 1e2a: 40 91 00 02 lds r20, 0x0200 1e2e: 50 91 01 02 lds r21, 0x0201 1e32: a0 e0 ldi r26, 0x00 ; 0 1e34: b1 e0 ldi r27, 0x01 ; 1 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; 1e36: 2c 91 ld r18, X 1e38: 30 e0 ldi r19, 0x00 ; 0 a |= (*bufPtr++) << 8; 1e3a: 11 96 adiw r26, 0x01 ; 1 1e3c: 8c 91 ld r24, X 1e3e: 11 97 sbiw r26, 0x01 ; 1 1e40: 90 e0 ldi r25, 0x00 ; 0 1e42: 98 2f mov r25, r24 1e44: 88 27 eor r24, r24 1e46: 82 2b or r24, r18 1e48: 93 2b or r25, r19 #ifdef VIRTUAL_BOOT_PARTITION #define rstVect (*(uint16_t*)(0x204)) #define wdtVect (*(uint16_t*)(0x206)) #endif /* main program starts here */ int main(void) { 1e4a: 12 96 adiw r26, 0x02 ; 2 ch = SPM_PAGESIZE / 2; do { uint16_t a; a = *bufPtr++; a |= (*bufPtr++) << 8; boot_page_fill((uint16_t)(void*)addrPtr,a); 1e4c: fa 01 movw r30, r20 1e4e: 0c 01 movw r0, r24 1e50: c0 92 57 00 sts 0x0057, r12 1e54: e8 95 spm 1e56: 11 24 eor r1, r1 addrPtr += 2; 1e58: 4e 5f subi r20, 0xFE ; 254 1e5a: 5f 4f sbci r21, 0xFF ; 255 } while (--ch); 1e5c: f1 e0 ldi r31, 0x01 ; 1 1e5e: a0 34 cpi r26, 0x40 ; 64 1e60: bf 07 cpc r27, r31 1e62: 49 f7 brne .-46 ; 0x1e36 // Write from programming buffer boot_page_write((uint16_t)(void*)address); 1e64: e0 91 00 02 lds r30, 0x0200 1e68: f0 91 01 02 lds r31, 0x0201 1e6c: e0 92 57 00 sts 0x0057, r14 1e70: e8 95 spm boot_spm_busy_wait(); 1e72: 07 b6 in r0, 0x37 ; 55 1e74: 00 fc sbrc r0, 0 1e76: fd cf rjmp .-6 ; 0x1e72 1e78: 41 c0 rjmp .+130 ; 0x1efc boot_rww_enable(); #endif } /* Read memory block mode, length is big endian. */ else if(ch == STK_READ_PAGE) { 1e7a: 84 37 cpi r24, 0x74 ; 116 1e7c: 89 f5 brne .+98 ; 0x1ee0 // READ PAGE - we only read flash getLen(); 1e7e: 64 d0 rcall .+200 ; 0x1f48 verifySpace(); 1e80: 71 d0 rcall .+226 ; 0x1f64 #ifdef VIRTUAL_BOOT_PARTITION do { // Undo vector patch in bottom page so verify passes if (address == 0) ch=rstVect & 0xff; 1e82: e0 91 00 02 lds r30, 0x0200 1e86: f0 91 01 02 lds r31, 0x0201 1e8a: 30 97 sbiw r30, 0x00 ; 0 1e8c: 19 f4 brne .+6 ; 0x1e94 1e8e: 20 91 04 02 lds r18, 0x0204 1e92: 13 c0 rjmp .+38 ; 0x1eba else if (address == 1) ch=rstVect >> 8; 1e94: e1 30 cpi r30, 0x01 ; 1 1e96: f1 05 cpc r31, r1 1e98: 19 f4 brne .+6 ; 0x1ea0 1e9a: 20 91 05 02 lds r18, 0x0205 1e9e: 0d c0 rjmp .+26 ; 0x1eba else if (address == 10) ch=wdtVect & 0xff; 1ea0: ea 30 cpi r30, 0x0A ; 10 1ea2: f1 05 cpc r31, r1 1ea4: 19 f4 brne .+6 ; 0x1eac 1ea6: 20 91 06 02 lds r18, 0x0206 1eaa: 07 c0 rjmp .+14 ; 0x1eba else if (address == 11) ch=wdtVect >> 8; 1eac: eb 30 cpi r30, 0x0B ; 11 1eae: f1 05 cpc r31, r1 1eb0: 19 f4 brne .+6 ; 0x1eb8 1eb2: 20 91 07 02 lds r18, 0x0207 1eb6: 01 c0 rjmp .+2 ; 0x1eba else ch = pgm_read_byte_near(address); 1eb8: 24 91 lpm r18, Z+ address++; 1eba: 80 91 00 02 lds r24, 0x0200 1ebe: 90 91 01 02 lds r25, 0x0201 1ec2: 01 96 adiw r24, 0x01 ; 1 1ec4: 90 93 01 02 sts 0x0201, r25 1ec8: 80 93 00 02 sts 0x0200, r24 putch(ch); 1ecc: 82 2f mov r24, r18 1ece: 19 d0 rcall .+50 ; 0x1f02 } while (--length); 1ed0: 80 91 02 02 lds r24, 0x0202 1ed4: 81 50 subi r24, 0x01 ; 1 1ed6: 80 93 02 02 sts 0x0202, r24 1eda: 88 23 and r24, r24 1edc: 91 f6 brne .-92 ; 0x1e82 1ede: 0e c0 rjmp .+28 ; 0x1efc while (--length); #endif } /* Get device signature bytes */ else if(ch == STK_READ_SIGN) { 1ee0: 85 37 cpi r24, 0x75 ; 117 1ee2: 39 f4 brne .+14 ; 0x1ef2 // READ SIGN - return what Avrdude wants to hear verifySpace(); 1ee4: 3f d0 rcall .+126 ; 0x1f64 putch(SIGNATURE_0); 1ee6: 8e e1 ldi r24, 0x1E ; 30 1ee8: 0c d0 rcall .+24 ; 0x1f02 putch(SIGNATURE_1); 1eea: 83 e9 ldi r24, 0x93 ; 147 1eec: 0a d0 rcall .+20 ; 0x1f02 putch(SIGNATURE_2); 1eee: 8c e0 ldi r24, 0x0C ; 12 1ef0: 51 cf rjmp .-350 ; 0x1d94 } else if (ch == 'Q') { 1ef2: 81 35 cpi r24, 0x51 ; 81 1ef4: 11 f4 brne .+4 ; 0x1efa // Adaboot no-wait mod watchdogConfig(WATCHDOG_16MS); 1ef6: 88 e0 ldi r24, 0x08 ; 8 1ef8: 2c d0 rcall .+88 ; 0x1f52 verifySpace(); } else { // This covers the response to commands like STK_ENTER_PROGMODE verifySpace(); 1efa: 34 d0 rcall .+104 ; 0x1f64 } putch(STK_OK); 1efc: 80 e1 ldi r24, 0x10 ; 16 1efe: 01 d0 rcall .+2 ; 0x1f02 1f00: 1e cf rjmp .-452 ; 0x1d3e 00001f02 : void putch(char ch) { #ifndef SOFT_UART while (!(UCSR0A & _BV(UDRE0))); UDR0 = ch; #else __asm__ __volatile__ ( 1f02: 2a e0 ldi r18, 0x0A ; 10 1f04: 30 e0 ldi r19, 0x00 ; 0 1f06: 80 95 com r24 1f08: 08 94 sec 1f0a: 10 f4 brcc .+4 ; 0x1f10 1f0c: da 98 cbi 0x1b, 2 ; 27 1f0e: 02 c0 rjmp .+4 ; 0x1f14 1f10: da 9a sbi 0x1b, 2 ; 27 1f12: 00 00 nop 1f14: 15 d0 rcall .+42 ; 0x1f40 1f16: 14 d0 rcall .+40 ; 0x1f40 1f18: 86 95 lsr r24 1f1a: 2a 95 dec r18 1f1c: b1 f7 brne .-20 ; 0x1f0a [uartBit] "I" (UART_TX_BIT) : "r25" ); #endif } 1f1e: 08 95 ret 00001f20 : return getch(); } // Watchdog functions. These are only safe with interrupts turned off. void watchdogReset() { __asm__ __volatile__ ( 1f20: a8 95 wdr #ifdef LED_DATA_FLASH LED_PIN |= _BV(LED); #endif return ch; } 1f22: 29 e0 ldi r18, 0x09 ; 9 1f24: 30 e0 ldi r19, 0x00 ; 0 1f26: cb 99 sbic 0x19, 3 ; 25 1f28: fe cf rjmp .-4 ; 0x1f26 1f2a: 0a d0 rcall .+20 ; 0x1f40 1f2c: 09 d0 rcall .+18 ; 0x1f40 1f2e: 08 d0 rcall .+16 ; 0x1f40 1f30: 88 94 clc 1f32: cb 99 sbic 0x19, 3 ; 25 1f34: 08 94 sec 1f36: 2a 95 dec r18 1f38: 11 f0 breq .+4 ; 0x1f3e 1f3a: 87 95 ror r24 1f3c: f7 cf rjmp .-18 ; 0x1f2c 1f3e: 08 95 ret 00001f40 : #if UART_B_VALUE > 255 #error Baud rate too slow for soft UART #endif void uartDelay() { __asm__ __volatile__ ( 1f40: 9e e0 ldi r25, 0x0E ; 14 1f42: 9a 95 dec r25 1f44: f1 f7 brne .-4 ; 0x1f42 1f46: 08 95 ret 00001f48 : } while (--count); } #endif uint8_t getLen() { getch(); 1f48: eb df rcall .-42 ; 0x1f20 length = getch(); 1f4a: ea df rcall .-44 ; 0x1f20 1f4c: 80 93 02 02 sts 0x0202, r24 return getch(); } 1f50: e7 cf rjmp .-50 ; 0x1f20 00001f52 : "wdr\n" ); } void watchdogConfig(uint8_t x) { WDTCSR = _BV(WDCE) | _BV(WDE); 1f52: 98 e1 ldi r25, 0x18 ; 24 1f54: 91 bd out 0x21, r25 ; 33 WDTCSR = x; 1f56: 81 bd out 0x21, r24 ; 33 } 1f58: 08 95 ret 00001f5a : void appStart() { watchdogConfig(WATCHDOG_OFF); 1f5a: 80 e0 ldi r24, 0x00 ; 0 1f5c: fa df rcall .-12 ; 0x1f52 __asm__ __volatile__ ( 1f5e: e5 e0 ldi r30, 0x05 ; 5 1f60: ff 27 eor r31, r31 1f62: 09 94 ijmp 00001f64 : do getch(); while (--count); verifySpace(); } void verifySpace() { if (getch() != CRC_EOP) appStart(); 1f64: dd df rcall .-70 ; 0x1f20 1f66: 80 32 cpi r24, 0x20 ; 32 1f68: 09 f0 breq .+2 ; 0x1f6c 1f6a: f7 df rcall .-18 ; 0x1f5a putch(STK_INSYNC); 1f6c: 84 e1 ldi r24, 0x14 ; 20 } 1f6e: c9 cf rjmp .-110 ; 0x1f02 ::[count] "M" (UART_B_VALUE) ); } #endif void getNch(uint8_t count) { 1f70: 1f 93 push r17 1f72: 18 2f mov r17, r24 00001f74 : do getch(); while (--count); 1f74: d5 df rcall .-86 ; 0x1f20 1f76: 11 50 subi r17, 0x01 ; 1 1f78: e9 f7 brne .-6 ; 0x1f74 verifySpace(); 1f7a: f4 df rcall .-24 ; 0x1f64 } 1f7c: 1f 91 pop r17 1f7e: 08 95 ret