aboutsummaryrefslogtreecommitdiffstats
path: root/rfc822.c
Commit message (Expand)AuthorAgeFilesLines
...
* Prevent buffer overruns.Eric S. Raymond1997-09-221-2/+13
* Alexander Kourakos's patch to improve rewriting.Eric S. Raymond1997-09-191-13/+27
* Fix nasty single-char-adddress bug in multidrop mode.Eric S. Raymond1997-09-101-1/+3
* Al Youngwerth's fix for RFC822.Eric S. Raymond1997-09-031-2/+3
* Copyright cleanup.Eric S. Raymond1997-06-131-2/+1
* -Wall cleanup.Eric S. Raymond1997-06-111-1/+1
* Yet more pparsing improvements.Eric S. Raymond1997-05-281-1/+3
* Handle RFC822 group names.Eric S. Raymond1997-05-281-1/+6
* Make header rewrite play better with exim.Eric S. Raymond1997-05-061-10/+11
* Prevent rewrite from fooing up on a blank To: header.Eric S. Raymond1997-05-061-4/+6
* Move an initialization to be more perspicuous.Eric S. Raymond1997-03-071-3/+1
* Ready for the UIDL patch.Eric S. Raymond1997-03-071-2/+5
* Comma fix for RFC822 parsing.Eric S. Raymond1997-02-211-27/+74
* Enable rfc822 compilation.Eric S. Raymond1997-02-211-2/+2
* Have reply_hack alter its input buffer in place.Eric S. Raymond1997-01-311-18/+18
* Better RFC822 parsing.Eric S. Raymond1997-01-251-74/+34
* Improved rewrite.Eric S. Raymond1997-01-211-8/+16
* Avoid core dump again.Eric S. Raymond1997-01-191-0/+1
* Avoid core dump in rewrite logic.Eric S. Raymond1997-01-191-1/+3
* This should handle RFC822 continuations now.Eric S. Raymond1997-01-161-12/+24
* This does a reasonable job.Eric S. Raymond1997-01-151-12/+16
* Much simpler rewrite logic.Eric S. Raymond1997-01-151-128/+32
* Another step forwards.Eric S. Raymond1997-01-151-4/+27
* This should be correct.Eric S. Raymond1997-01-151-15/+17
* We're most of the way to a better rewrite.Eric S. Raymond1997-01-151-36/+38
* Fix Steven Trainoff's bug.Eric S. Raymond1997-01-131-7/+12
* Can't reproduce NAKANE's problem.Eric S. Raymond1997-01-131-5/+16
* Eliminate bug reported by Steven TrainoffEric S. Raymond1997-01-111-18/+41
* Simpler and more effective address parsing.Eric S. Raymond1997-01-111-44/+43
* Save before messing with state machinery.Eric S. Raymond1997-01-111-25/+35
* Initial revisionEric S. Raymond1996-11-061-0/+322
200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
/*
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */

#include "config.h"
#include "md5.h"
#ifdef HAVE_STRING_H
#include <string.h>   /* memmove */
#endif

/*
 * Note: this code is harmless on little-endian machines.
 */
static void byteReverse(unsigned char *buf, unsigned longs)
{
    uint32 t;
    do {
	t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
	    ((unsigned) buf[1] << 8 | buf[0]);
	*(uint32 *) buf = t;
	buf += 4;
    } while (--longs);
}

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void MD5Init(struct MD5Context *ctx)
{
    ctx->buf[0] = 0x67452301;
    ctx->buf[1] = 0xefcdab89;
    ctx->buf[2] = 0x98badcfe;
    ctx->buf[3] = 0x10325476;

    ctx->bits[0] = 0;
    ctx->bits[1] = 0;
}

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void MD5Update(struct MD5Context *ctx, const void *buf_, unsigned len)
{
    const unsigned char *buf = (const unsigned char *)buf_;
    register uint32 t;

    /* Update bitcount */

    t = ctx->bits[0];
    if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
	ctx->bits[1]++;		/* Carry from low to high */
    ctx->bits[1] += len >> 29;

    t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */

    /* Handle any leading odd-sized chunks */

    if (t) {
	unsigned char *p = (unsigned char *) ctx->in + t;

	t = 64 - t;
	if (len < t) {
	    memmove(p, buf, len);
	    return;
	}
	memmove(p, buf, t);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);
	buf += t;
	len -= t;
    }
    /* Process data in 64-byte chunks */

    while (len >= 64) {
	memmove(ctx->in, buf, 64);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);
	buf += 64;
	len -= 64;
    }

    /* Handle any remaining bytes of data. */

    memmove(ctx->in, buf, len);
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern 
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void MD5Final(void *digest, struct MD5Context *ctx)
{
    unsigned int count;
    unsigned char *p;

    /* Compute number of bytes mod 64 */
    count = (ctx->bits[0] >> 3) & 0x3F;

    /* Set the first char of padding to 0x80.  This is safe since there is
       always at least one byte free */
    p = ctx->in + count;
    *p++ = 0x80;

    /* Bytes of padding needed to make 64 bytes */
    count = 64 - 1 - count;

    /* Pad out to 56 mod 64 */
    if (count < 8) {
	/* Two lots of padding:  Pad the first block to 64 bytes */
	memset(p, 0, count);
	byteReverse(ctx->in, 16);
	MD5Transform(ctx->buf, (uint32 *) ctx->in);

	/* Now fill the next block with 56 bytes */
	memset(ctx->in, 0, 56);
    } else {
	/* Pad block to 56 bytes */
	memset(p, 0, count - 8);
    }
    byteReverse(ctx->in, 14);

    /* Append length in bits and transform */
    ((uint32 *) ctx->in)[14] = ctx->bits[0];
    ((uint32 *) ctx->in)[15] = ctx->bits[1];

    MD5Transform(ctx->buf, (uint32 *) ctx->in);
    byteReverse((unsigned char *) ctx->buf, 4);
    memmove(digest, ctx->buf, 16);
    memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
}

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
void MD5Transform(uint32 buf[4], uint32 const in[16])
{
    register uint32 a, b, c, d;

    a = buf[0];
    b = buf[1];
    c = buf[2];
    d = buf[3];

    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

    buf[0] += a;
    buf[1] += b;
    buf[2] += c;
    buf[3] += d;
}