aboutsummaryrefslogtreecommitdiffstats
path: root/trio/html/index.html
diff options
context:
space:
mode:
Diffstat (limited to 'trio/html/index.html')
0 files changed, 0 insertions, 0 deletions
/a> 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/*************************************************************************
 *
 * $Id: trionan.c,v 1.26 2002/12/08 12:08:21 breese Exp $
 *
 * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
 * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
 * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
 *
 ************************************************************************
 *
 * Functions to handle special quantities in floating-point numbers
 * (that is, NaNs and infinity). They provide the capability to detect
 * and fabricate special quantities.
 *
 * Although written to be as portable as possible, it can never be
 * guaranteed to work on all platforms, as not all hardware supports
 * special quantities.
 *
 * The approach used here (approximately) is to:
 *
 *   1. Use C99 functionality when available.
 *   2. Use IEEE 754 bit-patterns if possible.
 *   3. Use platform-specific techniques.
 *
 ************************************************************************/

/*
 * TODO:
 *  o Put all the magic into trio_fpclassify_and_signbit(), and use this from
 *    trio_isnan() etc.
 */

/*************************************************************************
 * Include files
 */
#include "triodef.h"
#include "trionan.h"

#include <math.h>
#include <string.h>
#include <limits.h>
#include <float.h>
#if defined(TRIO_PLATFORM_UNIX)
# include <signal.h>
#endif
#if defined(TRIO_COMPILER_DECC)
# include <fp_class.h>
#endif
#include <assert.h>

#if defined(TRIO_DOCUMENTATION)
# include "doc/doc_nan.h"
#endif
/** @addtogroup SpecialQuantities
    @{
*/

/*************************************************************************
 * Definitions
 */

#define TRIO_TRUE (1 == 1)
#define TRIO_FALSE (0 == 1)

/*
 * We must enable IEEE floating-point on Alpha
 */
#if defined(__alpha) && !defined(_IEEE_FP)
# if defined(TRIO_COMPILER_DECC)
#  if defined(TRIO_PLATFORM_VMS)
#   error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
#  else
#   if !defined(_CFE)
#    error "Must be compiled with option -ieee"
#   endif
#  endif
# elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
#  error "Must be compiled with option -mieee"
# endif
#endif /* __alpha && ! _IEEE_FP */

/*
 * In ANSI/IEEE 754-1985 64-bits double format numbers have the
 * following properties (amoungst others)
 *
 *   o FLT_RADIX == 2: binary encoding
 *   o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
 *     to indicate special numbers (e.g. NaN and Infinity), so the
 *     maximum exponent is 10 bits wide (2^10 == 1024).
 *   o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
 *     numbers are normalized the initial binary 1 is represented
 *     implicitly (the so-called "hidden bit"), which leaves us with
 *     the ability to represent 53 bits wide mantissa.
 */
#if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
# define USE_IEEE_754
#endif


/*************************************************************************
 * Constants
 */

static TRIO_CONST char rcsid[] = "@(#)$Id: trionan.c,v 1.26 2002/12/08 12:08:21 breese Exp $";

#if defined(USE_IEEE_754)

/*
 * Endian-agnostic indexing macro.
 *
 * The value of internalEndianMagic, when converted into a 64-bit
 * integer, becomes 0x0706050403020100 (we could have used a 64-bit
 * integer value instead of a double, but not all platforms supports
 * that type). The value is automatically encoded with the correct
 * endianess by the compiler, which means that we can support any
 * kind of endianess. The individual bytes are then used as an index
 * for the IEEE 754 bit-patterns and masks.
 */
#define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])

static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;

/* Mask for the exponent */
static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
  0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

/* Mask for the mantissa */
static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
  0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};

/* Mask for the sign bit */
static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
  0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

/* Bit-pattern for negative zero */
static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
  0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

/* Bit-pattern for infinity */
static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
  0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

/* Bit-pattern for quiet NaN */
static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
  0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};


/*************************************************************************
 * Functions
 */

/*
 * trio_make_double
 */
TRIO_PRIVATE double
trio_make_double
TRIO_ARGS1((values),
	   TRIO_CONST unsigned char *values)
{
  TRIO_VOLATILE double result;
  int i;

  for (i = 0; i < (int)sizeof(double); i++) {
    ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
  }
  return result;
}

/*
 * trio_is_special_quantity
 */
TRIO_PRIVATE int
trio_is_special_quantity
TRIO_ARGS2((number, has_mantissa),
	   double number,
	   int *has_mantissa)
{
  unsigned int i;
  unsigned char current;
  int is_special_quantity = TRIO_TRUE;

  *has_mantissa = 0;

  for (i = 0; i < (unsigned int)sizeof(double); i++) {
    current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
    is_special_quantity
      &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
    *has_mantissa |= (current & ieee_754_mantissa_mask[i]);
  }
  return is_special_quantity;
}

/*
 * trio_is_negative
 */
TRIO_PRIVATE int
trio_is_negative
TRIO_ARGS1((number),
	   double number)
{
  unsigned int i;
  int is_negative = TRIO_FALSE;

  for (i = 0; i < (unsigned int)sizeof(double); i++) {
    is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]
		    & ieee_754_sign_mask[i]);
  }
  return is_negative;
}

#endif /* USE_IEEE_754 */


/**
   Generate negative zero.

   @return Floating-point representation of negative zero.
*/
TRIO_PUBLIC double
trio_nzero(TRIO_NOARGS)
{
#if defined(USE_IEEE_754)
  return trio_make_double(ieee_754_negzero_array);
#else
  TRIO_VOLATILE double zero = 0.0;

  return -zero;
#endif
}

/**
   Generate positive infinity.

   @return Floating-point representation of positive infinity.
*/
TRIO_PUBLIC double
trio_pinf(TRIO_NOARGS)
{
  /* Cache the result */
  static double result = 0.0;

  if (result == 0.0) {
    
#if defined(INFINITY) && defined(__STDC_IEC_559__)
    result = (double)INFINITY;

#elif defined(USE_IEEE_754)
    result = trio_make_double(ieee_754_infinity_array);

#else
    /*
     * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
     * as infinity. Otherwise we have to resort to an overflow
     * operation to generate infinity.
     */
# if defined(TRIO_PLATFORM_UNIX)
    void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
# endif

    result = HUGE_VAL;
    if (HUGE_VAL == DBL_MAX) {
      /* Force overflow */
      result += HUGE_VAL;
    }
    
# if defined(TRIO_PLATFORM_UNIX)
    signal(SIGFPE, signal_handler);
# endif

#endif
  }
  return result;
}

/**
   Generate negative infinity.

   @return Floating-point value of negative infinity.
*/
TRIO_PUBLIC double
trio_ninf(TRIO_NOARGS)
{
  static double result = 0.0;

  if (result == 0.0) {
    /*
     * Negative infinity is calculated by negating positive infinity,
     * which can be done because it is legal to do calculations on
     * infinity (for example,  1 / infinity == 0).
     */
    result = -trio_pinf();
  }
  return result;
}

/**
   Generate NaN.

   @return Floating-point representation of NaN.
*/
TRIO_PUBLIC double
trio_nan(TRIO_NOARGS)
{
  /* Cache the result */
  static double result = 0.0;

  if (result == 0.0) {
    
#if defined(TRIO_COMPILER_SUPPORTS_C99)
    result = nan("");

#elif defined(NAN) && defined(__STDC_IEC_559__)
    result = (double)NAN;
  
#elif defined(USE_IEEE_754)
    result = trio_make_double(ieee_754_qnan_array);

#else
    /*
     * There are several ways to generate NaN. The one used here is
     * to divide infinity by infinity. I would have preferred to add
     * negative infinity to positive infinity, but that yields wrong
     * result (infinity) on FreeBSD.
     *
     * This may fail if the hardware does not support NaN, or if
     * the Invalid Operation floating-point exception is unmasked.
     */
# if defined(TRIO_PLATFORM_UNIX)
    void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
# endif
    
    result = trio_pinf() / trio_pinf();
    
# if defined(TRIO_PLATFORM_UNIX)
    signal(SIGFPE, signal_handler);
# endif
    
#endif
  }
  return result;
}

/**
   Check for NaN.

   @param number An arbitrary floating-point number.
   @return Boolean value indicating whether or not the number is a NaN.
*/
TRIO_PUBLIC int
trio_isnan
TRIO_ARGS1((number),
	   double number)
{
#if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
 || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
  /*
   * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
   * function. This function was already present in XPG4, but this
   * is a bit tricky to detect with compiler defines, so we choose
   * the conservative approach and only use it for UNIX95.
   */
  return isnan(number);
  
#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
  /*
   * Microsoft Visual C++ and Borland C++ Builder have an _isnan()
   * function.
   */
  return _isnan(number) ? TRIO_TRUE : TRIO_FALSE;

#elif defined(USE_IEEE_754)
  /*
   * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
   * pattern, and a non-empty mantissa.
   */
  int has_mantissa;
  int is_special_quantity;

  is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
  
  return (is_special_quantity && has_mantissa);
  
#else
  /*
   * Fallback solution
   */
  int status;
  double integral, fraction;
  
# if defined(TRIO_PLATFORM_UNIX)
  void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
# endif
  
  status = (/*
	     * NaN is the only number which does not compare to itself
	     */
	    ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) ||
	    /*
	     * Fallback solution if NaN compares to NaN
	     */
	    ((number != 0.0) &&
	     (fraction = modf(number, &integral),
	      integral == fraction)));
  
# if defined(TRIO_PLATFORM_UNIX)
  signal(SIGFPE, signal_handler);
# endif
  
  return status;
  
#endif
}

/**
   Check for infinity.

   @param number An arbitrary floating-point number.
   @return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
*/
TRIO_PUBLIC int
trio_isinf
TRIO_ARGS1((number),
	   double number)
{
#if defined(TRIO_COMPILER_DECC)
  /*
   * DECC has an isinf() macro, but it works differently than that
   * of C99, so we use the fp_class() function instead.
   */
  return ((fp_class(number) == FP_POS_INF)
	  ? 1
	  : ((fp_class(number) == FP_NEG_INF) ? -1 : 0));

#elif defined(isinf)
  /*
   * C99 defines isinf() as a macro.
   */
  return isinf(number)
    ? ((number > 0.0) ? 1 : -1)
    : 0;
  
#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
  /*
   * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
   * function that can be used to detect infinity.
   */
  return ((_fpclass(number) == _FPCLASS_PINF)
	  ? 1
	  : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));

#elif defined(USE_IEEE_754)
  /*
   * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
   * pattern, and an empty mantissa.
   */
  int has_mantissa;
  int is_special_quantity;

  is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
  
  return (is_special_quantity && !has_mantissa)
    ? ((number < 0.0) ? -1 : 1)
    : 0;

#else
  /*
   * Fallback solution.
   */
  int status;
  
# if defined(TRIO_PLATFORM_UNIX)
  void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
# endif
  
  double infinity = trio_pinf();
  
  status = ((number == infinity)
	    ? 1
	    : ((number == -infinity) ? -1 : 0));
  
# if defined(TRIO_PLATFORM_UNIX)
  signal(SIGFPE, signal_handler);
# endif
  
  return status;
  
#endif
}


/**
   Check for finity.

   @param number An arbitrary floating-point number.
   @return Boolean value indicating whether or not the number is a finite.
*/
TRIO_PUBLIC int
trio_isfinite
TRIO_ARGS1((number),
	   double number)
{
#if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
  /*
   * C99 defines isfinite() as a macro.
   */
  return isfinite(number);
  
#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
  /*
   * Microsoft Visual C++ and Borland C++ Builder use _finite().
   */
  return _finite(number);

#elif defined(USE_IEEE_754)
  /*
   * Examine IEEE 754 bit-pattern. For finity we do not care about the
   * mantissa.
   */
  int dummy;

  return (! trio_is_special_quantity(number, &dummy));

#else
  /*
   * Fallback solution.
   */
  return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0));
  
#endif
}


/*
 * The sign of NaN is always false
 */
TRIO_PUBLIC int
trio_fpclassify_and_signbit
TRIO_ARGS2((number, is_negative),
	   double number,
	   int *is_negative)
{
#if defined(fpclassify) && defined(signbit)
  /*
   * C99 defines fpclassify() and signbit() as a macros
   */
  *is_negative = signbit(number);
  switch (fpclassify(number)) {
  case FP_NAN:
    return TRIO_FP_NAN;
  case FP_INFINITE:
    return TRIO_FP_INFINITE;
  case FP_SUBNORMAL:
    return TRIO_FP_SUBNORMAL;
  case FP_ZERO:
    return TRIO_FP_ZERO;
  default:
    return TRIO_FP_NORMAL;
  }

#else
# if defined(TRIO_COMPILER_DECC)
  /*
   * DECC has an fp_class() function.
   */
#  define TRIO_FPCLASSIFY(n) fp_class(n)
#  define TRIO_QUIET_NAN FP_QNAN
#  define TRIO_SIGNALLING_NAN FP_SNAN
#  define TRIO_POSITIVE_INFINITY FP_POS_INF
#  define TRIO_NEGATIVE_INFINITY FP_NEG_INF
#  define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM
#  define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM
#  define TRIO_POSITIVE_ZERO FP_POS_ZERO
#  define TRIO_NEGATIVE_ZERO FP_NEG_ZERO
#  define TRIO_POSITIVE_NORMAL FP_POS_NORM
#  define TRIO_NEGATIVE_NORMAL FP_NEG_NORM
  
# elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
  /*
   * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
   * function.
   */
#  define TRIO_FPCLASSIFY(n) _fpclass(n)
#  define TRIO_QUIET_NAN _FPCLASS_QNAN
#  define TRIO_SIGNALLING_NAN _FPCLASS_SNAN
#  define TRIO_POSITIVE_INFINITY _FPCLASS_PINF
#  define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF
#  define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD
#  define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND
#  define TRIO_POSITIVE_ZERO _FPCLASS_PZ
#  define TRIO_NEGATIVE_ZERO _FPCLASS_NZ
#  define TRIO_POSITIVE_NORMAL _FPCLASS_PN
#  define TRIO_NEGATIVE_NORMAL _FPCLASS_NN
  
# elif defined(FP_PLUS_NORM)
  /*
   * HP-UX 9.x and 10.x have an fpclassify() function, that is different
   * from the C99 fpclassify() macro supported on HP-UX 11.x.
   *
   * AIX has class() for C, and _class() for C++, which returns the
   * same values as the HP-UX fpclassify() function.
   */
#  if defined(TRIO_PLATFORM_AIX)
#   if defined(__cplusplus)
#    define TRIO_FPCLASSIFY(n) _class(n)
#   else
#    define TRIO_FPCLASSIFY(n) class(n)
#   endif
#  else
#   define TRIO_FPCLASSIFY(n) fpclassify(n)
#  endif
#  define TRIO_QUIET_NAN FP_QNAN
#  define TRIO_SIGNALLING_NAN FP_SNAN
#  define TRIO_POSITIVE_INFINITY FP_PLUS_INF
#  define TRIO_NEGATIVE_INFINITY FP_MINUS_INF
#  define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM
#  define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM
#  define TRIO_POSITIVE_ZERO FP_PLUS_ZERO
#  define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO
#  define TRIO_POSITIVE_NORMAL FP_PLUS_NORM
#  define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM
# endif

# if defined(TRIO_FPCLASSIFY)
  switch (TRIO_FPCLASSIFY(number)) {
  case TRIO_QUIET_NAN:
  case TRIO_SIGNALLING_NAN:
    *is_negative = TRIO_FALSE; /* NaN has no sign */
    return TRIO_FP_NAN;
  case TRIO_POSITIVE_INFINITY:
    *is_negative = TRIO_FALSE;
    return TRIO_FP_INFINITE;
  case TRIO_NEGATIVE_INFINITY:
    *is_negative = TRIO_TRUE;
    return TRIO_FP_INFINITE;
  case TRIO_POSITIVE_SUBNORMAL:
    *is_negative = TRIO_FALSE;
    return TRIO_FP_SUBNORMAL;
  case TRIO_NEGATIVE_SUBNORMAL:
    *is_negative = TRIO_TRUE;
    return TRIO_FP_SUBNORMAL;
  case TRIO_POSITIVE_ZERO:
    *is_negative = TRIO_FALSE;
    return TRIO_FP_ZERO;
  case TRIO_NEGATIVE_ZERO:
    *is_negative = TRIO_TRUE;
    return TRIO_FP_ZERO;
  case TRIO_POSITIVE_NORMAL:
    *is_negative = TRIO_FALSE;
    return TRIO_FP_NORMAL;
  case TRIO_NEGATIVE_NORMAL:
    *is_negative = TRIO_TRUE;
    return TRIO_FP_NORMAL;
  default:
    /* Just in case... */
    *is_negative = (number < 0.0);
    return TRIO_FP_NORMAL;
  }
  
# else
  /*
   * Fallback solution.
   */
  int rc;
  
  if (number == 0.0) {
    /*
     * In IEEE 754 the sign of zero is ignored in comparisons, so we
     * have to handle this as a special case by examining the sign bit
     * directly.
     */
#  if defined(USE_IEEE_754)
    *is_negative = trio_is_negative(number);
#  else
    *is_negative = TRIO_FALSE; /* FIXME */
#  endif
    return TRIO_FP_ZERO;
  }
  if (trio_isnan(number)) {
    *is_negative = TRIO_FALSE;
    return TRIO_FP_NAN;
  }
  if ((rc = trio_isinf(number))) {
    *is_negative = (rc == -1);
    return TRIO_FP_INFINITE;
  }
  if ((number > 0.0) && (number < DBL_MIN)) {
    *is_negative = TRIO_FALSE;
    return TRIO_FP_SUBNORMAL;
  }
  if ((number < 0.0) && (number > -DBL_MIN)) {
    *is_negative = TRIO_TRUE;
    return TRIO_FP_SUBNORMAL;
  }
  *is_negative = (number < 0.0);
  return TRIO_FP_NORMAL;
  
# endif
#endif
}

/**
   Examine the sign of a number.

   @param number An arbitrary floating-point number.
   @return Boolean value indicating whether or not the number has the
   sign bit set (i.e. is negative).
*/
TRIO_PUBLIC int
trio_signbit
TRIO_ARGS1((number),
	   double number)
{
  int is_negative;
  
  (void)trio_fpclassify_and_signbit(number, &is_negative);
  return is_negative;
}

/**
   Examine the class of a number.

   @param number An arbitrary floating-point number.
   @return Enumerable value indicating the class of @p number
*/
TRIO_PUBLIC int
trio_fpclassify
TRIO_ARGS1((number),
	   double number)
{
  int dummy;
  
  return trio_fpclassify_and_signbit(number, &dummy);
}


/** @} SpecialQuantities */

/*************************************************************************
 * For test purposes.
 *
 * Add the following compiler option to include this test code.
 *
 *  Unix : -DSTANDALONE
 *  VMS  : /DEFINE=(STANDALONE)
 */
#if defined(STANDALONE)
# include <stdio.h>

static TRIO_CONST char *
getClassification
TRIO_ARGS1((type),
	   int type)
{
  switch (type) {
  case TRIO_FP_INFINITE:
    return "FP_INFINITE";
  case TRIO_FP_NAN:
    return "FP_NAN";
  case TRIO_FP_NORMAL:
    return "FP_NORMAL";
  case TRIO_FP_SUBNORMAL:
    return "FP_SUBNORMAL";
  case TRIO_FP_ZERO:
    return "FP_ZERO";
  default:
    return "FP_UNKNOWN";
  }
}

static void
print_class
TRIO_ARGS2((prefix, number),
	   TRIO_CONST char *prefix,
	   double number)
{
  printf("%-6s: %s %-15s %g\n",
	 prefix,
	 trio_signbit(number) ? "-" : "+",
	 getClassification(trio_fpclassify(number)),
	 number);
}

int main(TRIO_NOARGS)
{
  double my_nan;
  double my_pinf;
  double my_ninf;
# if defined(TRIO_PLATFORM_UNIX)
  void (*signal_handler) TRIO_PROTO((int));
# endif

  my_nan = trio_nan();
  my_pinf = trio_pinf();
  my_ninf = trio_ninf();

  print_class("Nan", my_nan);
  print_class("PInf", my_pinf);
  print_class("NInf", my_ninf);
  print_class("PZero", 0.0);
  print_class("NZero", -0.0);
  print_class("PNorm", 1.0);
  print_class("NNorm", -1.0);
  print_class("PSub", 1.01e-307 - 1.00e-307);
  print_class("NSub", 1.00e-307 - 1.01e-307);
  
  printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
	 my_nan,
	 ((unsigned char *)&my_nan)[0],
	 ((unsigned char *)&my_nan)[1],
	 ((unsigned char *)&my_nan)[2],
	 ((unsigned char *)&my_nan)[3],
	 ((unsigned char *)&my_nan)[4],
	 ((unsigned char *)&my_nan)[5],
	 ((unsigned char *)&my_nan)[6],
	 ((unsigned char *)&my_nan)[7],
	 trio_isnan(my_nan), trio_isinf(my_nan));
  printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
	 my_pinf,
	 ((unsigned char *)&my_pinf)[0],
	 ((unsigned char *)&my_pinf)[1],
	 ((unsigned char *)&my_pinf)[2],
	 ((unsigned char *)&my_pinf)[3],
	 ((unsigned char *)&my_pinf)[4],
	 ((unsigned char *)&my_pinf)[5],
	 ((unsigned char *)&my_pinf)[6],
	 ((unsigned char *)&my_pinf)[7],
	 trio_isnan(my_pinf), trio_isinf(my_pinf));
  printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
	 my_ninf,
	 ((unsigned char *)&my_ninf)[0],
	 ((unsigned char *)&my_ninf)[1],
	 ((unsigned char *)&my_ninf)[2],
	 ((unsigned char *)&my_ninf)[3],
	 ((unsigned char *)&my_ninf)[4],
	 ((unsigned char *)&my_ninf)[5],
	 ((unsigned char *)&my_ninf)[6],
	 ((unsigned char *)&my_ninf)[7],
	 trio_isnan(my_ninf), trio_isinf(my_ninf));
  
# if defined(TRIO_PLATFORM_UNIX)
  signal_handler = signal(SIGFPE, SIG_IGN);
# endif
  
  my_pinf = DBL_MAX + DBL_MAX;
  my_ninf = -my_pinf;
  my_nan = my_pinf / my_pinf;

# if defined(TRIO_PLATFORM_UNIX)
  signal(SIGFPE, signal_handler);
# endif
  
  printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
	 my_nan,
	 ((unsigned char *)&my_nan)[0],
	 ((unsigned char *)&my_nan)[1],
	 ((unsigned char *)&my_nan)[2],
	 ((unsigned char *)&my_nan)[3],
	 ((unsigned char *)&my_nan)[4],
	 ((unsigned char *)&my_nan)[5],
	 ((unsigned char *)&my_nan)[6],
	 ((unsigned char *)&my_nan)[7],
	 trio_isnan(my_nan), trio_isinf(my_nan));
  printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
	 my_pinf,
	 ((unsigned char *)&my_pinf)[0],
	 ((unsigned char *)&my_pinf)[1],
	 ((unsigned char *)&my_pinf)[2],
	 ((unsigned char *)&my_pinf)[3],
	 ((unsigned char *)&my_pinf)[4],
	 ((unsigned char *)&my_pinf)[5],
	 ((unsigned char *)&my_pinf)[6],
	 ((unsigned char *)&my_pinf)[7],
	 trio_isnan(my_pinf), trio_isinf(my_pinf));
  printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
	 my_ninf,
	 ((unsigned char *)&my_ninf)[0],
	 ((unsigned char *)&my_ninf)[1],
	 ((unsigned char *)&my_ninf)[2],
	 ((unsigned char *)&my_ninf)[3],
	 ((unsigned char *)&my_ninf)[4],
	 ((unsigned char *)&my_ninf)[5],
	 ((unsigned char *)&my_ninf)[6],
	 ((unsigned char *)&my_ninf)[7],
	 trio_isnan(my_ninf), trio_isinf(my_ninf));
  
  return 0;
}
#endif